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Abstract

An iterative method for characterization of piezoelectric ceramics of a disk in radial vibrational mode has been developed. The complex materials
constants (dielectric constants, elastic compliance coefficients and piezoelectric constants) of piezoelectric ceramics with various mechanical quality
factor (Q) were accurately determined. An explicit procedure for estimating the appropriate initial values of the complex materials constants for a
nonlinear iteration process has been presented. The present nonlinear iterative fitting procedure was carried out for the experimental admittance
spectra Y = G + jB for various specimens with moderate (667) or low (29) Q values and the validity of the method was verified.
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1. Introduction

In the previous paper, an iterative method for characteriza-
tion of piezoelectrics with a bar in length extensional vibration
mode has been reported.! With this method both real and imagi-
nary parts for the whole set of dielectric, elastic and piezoelectric
constants in piezoelectric materials have been successfully deter-
mined. Though a length extensional vibrational mode of a bar
poled and exited in direction of its thickness is simple and fun-
damental, one of the more frequently used mode is a radial
vibration of an axially poled disk due to its relative ease of
manufacturing, polarization processes and wide practical appli-
cations.

There have been several reports on determination of the
complex materials constants for ceramics in a radial vibration
mode.”* The methods used are classified as iterative or nonit-
erative. The noninterative method for the radial mode has been
proposed by Sherrit et al.> In their process nine characteris-
tic frequencies (the first and the second resonance frequencies,

S(]) and fs(z), the first antiresonance frequency fé]) and their
half-band frequencies) should be measured with high accuracy,
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however accurate measurements of those frequencies will be
difficult task especially for the specimens with low mechanical
quality factor Q. For radial modes, the noniterative method is
valid only for materials with intermediate mechanical quality
factors. The iterative method proposed by Alemany et al.3 can
be applied to the specimens with low Q values. However their
method requires a judicious choice of the admittance data at
the frequencies where the maximum piezoelectric contributions
are contained. The criteria for determining those frequencies are
not explicit, hence an iteration process is required to find those
frequencies. In their method, measurements of new admittance
data at the new frequencies are necessary in the iteration pro-
cess, thus their measurements took time. Recently a new iterative
method for determining the dielectric, piezoelectric and elas-
tic constants in a complex form for the piezoelectric ceramics
in radial mode has been reported by Amarande et al.* They
improved Alemany’s process by separating the data acquisition
and processing. However, their method still need to determine
the characteristic frequencies, which are similar to those required
by Alemany’s method. The explicit procedure for estimating the
appropriate initial parameters for the iteration process has not
been presented because of the indefinite characteristic frequen-
cies.

A new routine with an explicit procedure for determining
the initial values and up-to-date nonlinear least square itera-
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tion method are demanded to automate the iteration process for
characterization of a ceramic disk in a radial vibration mode.

An iterative automated procedure for determining the
complex materials constants from G (conductance) and B (sus-
ceptance) spectra of a ceramic disk in the radial vibration mode
has been developed in this paper. The details of the procedure
will be described in the following sections.

2. Experiment

Specimens used in the experiments were KggLig.1NbO3,
PbZr(),51Ti044903 (1 wt%: Nb205), PbZr0.51Ti0,4903 and
PbZrg 51 Tip.4903 (0.5 wt%: MnO3;). Ceramic specimens (radius
8 mm, thickness 0.8 mm) were used. The conductance (G)
and susceptance (B) of the specimens were measured in the
frequency region around the fundamental ( fs(l)) and 1st over-
tone ( fs(z)) resonances by an impedance-gain-phase analyzer
(Schlunberge SI 1260), controlled by a computer via a GP-IB
interface. The fundamental and Ist overtone resonance bands
were swept in the frequency range of 10 x A fs(l) and 10 x
AP where AfD and Af? are the half-band widths of the
fundamental and 1st overtone resonance bands, respectively. The
A fs(l) and A fs(z) are defined as the difference in frequencies
between the maximum (/1) and the minimum ( f2) of B in the
fundamental and 1st resonance bands, respectively. The number
of data acquisition points in the measured frequency range was
200. The programs for data acquisition and further processing
were written in Visual Basic (Microsoft). Data on the frequency
dependence of the G and B were stored in a personal computer.
The values of G at the resonance frequency fs(l) (= fo)and G
and B at frequencies f] and f, were picked up from the data of

G(f) and B(f).

3. Iteration Procedure

The basic idea for the present nonlinear iteration process is
based on the method described for a bar specimen in the length
extensional mode.! However, in the case of a ceramic disk poled
and excited in its thickness in the radial vibration mode, the
circular shape impose some differences in mathematical descrip-
tion, thus the algorithm must be modified.

The electrical admittance of a electrically poled disk with a
radial vibration mode is obtained from the linear piezoelectric
basic equations.> The admittance as a function of frequencies is
given by the following expression:

y— 7 a? ngl 1 +0)J1(2)
= w——
I (1 —o)s, 2 Jo(z) — (1 — 0)J1(2)
2 2
Ta T 2 dy
+wo— | 833 — - |- 1
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where Jy and J; are Bessel’s functions of the first kind of Oth
and 1st orders and

z=way/psE 1 —o?),

where the density p, the radius a, the thickness #, Poisson’s ratio
o and the driving frequency w are real quantities. The other
symbols refer to complex parameters, such as the piezoelectric
charge coefficient d3j, the dielectric constant at constant stress
83?3, and the elastic compliance at constant electric field sﬁ.
An important parameter obtained from the previous constants is
electromechanical coupling factor kj, given by

2
2 _ 2d5,
= T E :
PelsE (1 +0)
The complex materials constants sﬁ, 83T3, and d3; are defined
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The admittance formula given in Eq. (1) is expanded around sy,

83T3/, and d4, and the terms over the square of sﬁ”, 83T3U and dj,
are discarded. This simplification leads to the results:

Y1 =G|+ jB;

where Y|, G| and B; represent the linearized admittance, con-
ductance and susceptance, respectively. The expressions for the
conductance G and susceptance Bj are given in Appendix A.

The fundamental resonance frequency ( fs(l)) and the 1stover-
tone frequency ( fs(z)) give two values of z as follows:

21 =2m fPay/psE (1 - a?),
2 =21 fs(z)a\/psﬁ(l —o2).

These two z obey the following relation:

(2)
22 s
R , 2
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At both the fundamental resonance frequency fs(l) and the 1st

overtone frequency fs(z) , the resonance conditions should be
satisfied by the following equations:

Jizn=1-o 3)
Ji(z2)=1—o0, 4

where J1(z) = z Jo(z)/J1(z) is the modified quotient of cylin-
drical functions of the first kind. The problem is just to solve
a system of two transcendental equations (3) and (4) with two
unknown parameters o and z; under the condition of Eq. (2). We
calculate the o and z; which satisfies these Egs. (3) and (4) by a
self-consistent iteration process. This is the only place where the
1st overtone frequency fsm takes part. In the rest of the process
only experimental data around the fundamental resonance are
sufficient.

We can determine the initial values for the iteration process
as follows. The real part of elastic compliance sﬁ/ is calculated
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from the fundamental resonance frequency fs(l) = fo)-
e
patoi(l —o?)

where

21 = 2nfWMay/ psF (1 — 62),

. . (A .
The imaginary part sﬁ is given as

sﬁ =sﬁ/ <f2;0f1>.

. 4 1" .
Since sﬁ and sﬁ are known, the unknown parameters in B are

4 . o, 4 .
e15 and d}, . The initial values of €13 and dj; can be obtained by

w] = 27tfs(1).

3

solving the simultaneous equations of B1(f1) and B(f>) for 83T3/
and d; .

Bi(f)\ _ [ bi(f) ba(f) [ ek )

Bi(f) bi(f) baf) ) \ a2

The expressions for b1 ( f) and by (f) are given in Appendix
A.

At this stage, sﬁ , sﬁ”, 8% and dy, are known and 83T3” and
dy, are the only unknown parameters in G1. The initial values

of 83T3N and d7, can be determined by solving the simultaneous
equations of G1(f1) and G( f>) for 53T; and d5; .

Gif) _ (&) g0 (e I S
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The expressions for the g1(f), g2(f) and g3(f) are given in
Appendix A.

The initial values of s¥|, e, and d3; are putinto Eq. (1) and the
iteration calculation starts to simulate the G1(f) and Bi(f). In
the present nonlinear iteration method, Levenberg—Marquardt’s
algorithm’ is employed and the complex materials constants
are determined by minimizing x> as has been presented in the
previous paper.! The determination of the complex materials
constants has been achieved by a curve fitting approach. The
whole resonance spectra are used and the correctness of the
fitting is ensured in the whole measured range. The iteration
calculation has been performed with the use of a commercially
available program package (IGOR Pro. WaveMetrics Inc.). This
program allows complex variables as fitting parameters. The
flow chart of the nonlinear iteration process is shown in Fig. 1.

4. Results

The results of the simulation for G(f) and B(f) of the
specimen KgogLip NbOs3 is shown in Fig. 2(a) and (b). The
mechanical Q factor for this specimen is 29 which is much
lower comparing with the ordinary ceramic specimens and
the signal level of the admittance is less than 1/100 compar-
ing with PbZr( 51 Tip.4903 (0.5 wt%: MnO,). The agreement
between the experimental G and B spectra and the calculated
ones is rather excellent taking into account of the poor reso-
nance characteristics. The complex materials constants obtained
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Fig. 1. Blockdiagram of nonlinear iteration process.

and dzq !

in the present iteration method (G-B fitting) are given in
Table 1 in addition to the values calculated by the conventional
resonance—antiresonance method (R—A method). The results of
the simulation for G( f) and B( f) for PbZrg 51 Tip.4903 (0.5 wt%:
MnO,) is shown in Fig. 3(a) and (b). The mechanical Q factor
for PbZrg 51 Tig4903(0.5 wt%: MnO,) is 667. The agreement
between the experimental and the calculated values are excel-
lent. This shows that the present iterative method can be applied
for versatile specimens without regarding the magnitude of Q.
The complex materials constants for PbZrg 51 Tig.4903 (1 wt%:
Nb;,O5) and PbZr( 51 Tip 4903 with rather low Q values are given
in Table 2 in addition to the values calculated by conventional
R-A method.

The difference between the elastic compliance coefficients
determined by R—A method and G- B fitting method is rather
small (less than a few %) but the difference in the piezo-
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Fig. 2. (a) G (conductance) and (b) B (susceptance) of Ko 9Lip 1 NbO3 in radial
vibration mode.

electric constants and electromechanical coupling factor is
large, especially for Ko 9Lig 1 NbOs3. The piezoelectric constant
d3) determined by R—A method is 4.7 times larger than that
determined by G-B fitting for K¢ 9Lip.1NbO3. The electrome-
chanical coupling factor determined by R—A method is 3.3
times larger than that obtained by G-B fitting method. The
same tendency is found in PbZrg 51 Tip4903 (1 wt%: NbyOs)
and PbZr( 51 Tip 4903. The piezoelectric constant and electrome-

Table 1
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Fig.3. (a) G (conductance) and (b) B (susceptance) of PbZr 51 Tip 4903 (0.5 wt%
MnO,) in radial vibration mode.

chanical coupling factor determined by R—A method for low O
materials are substantially higher than the values determined by
the G-B fitting method.

5. Discussion

The IEEE Standard method has the advantages of being
quick and not requiring any expensive equipment. These advan-
tages, however, are accompanied by ignorance of all the phase

Complex materials constants of Ko 9Lip 1 NbO3 and PbZr( 51 Tip.4903 (0.5 wt% MnO,) estimated by resonance—antiresonance (R—A) method and G-B fitting

Ko9Lip. 1 NbO3 PbZrg 51 Tig.4903 (0.5 wt% MnO;)

R-A method G-B fitting R—-A method G-B fitting
sE (m2/N) 1.372 x 10711 1.533 x 107! 1.036 x 107! 1.034 x 107!
sE (m?/N) 3.536 x 10713 5.099 x 1012 1.474 x 10~ 0.905 x 1014
dj, (C/N) —4.580 x 107! —8.402 x 10712 —8.463 x 10711 —7.765 x 10711
d}, (C/N) —3.136 x 1012 —1.658 x 10713
el (F/m) 3.703 x 1077 1.874 x 1077 8.223 x 107° 7.647 x 1070
ely (F/m) 2.558 x 10710 7.085 x 10710
- 0.34 0.33 0.33 0.33
kp 0.26 0.08 0.56 0.48
0 352 29 702 667
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Table 2

Complex materials constants of PbZ 51 Tig.4903 and PbZrg 51 Tip 4903 (1 wt%Nb,Os) estimated by resonance—antiresonance (R—A) method and G-B fitting

PbZ.51Tip.4903

PbZry 51 Tip.4903 (1 wt%Nb,Os)

R-A method G-B fitting R-A method G-B fitting
sE (m?/N) 1.230 x 10711 1.192 x 10711 1.216 x 107! 1.112 x 10711
sE (m?/N) 9.517 x 10714 3.507 x 10713 1.185 x 10713 5.418 x 10713
d}, (C/N) —2.461 x 107! —3.248 x 107! —3.129 x 10712 —9.0666 x 10~
d3 (CIN) —2354x 10712 —2.067 x 10712
el (F/m) 8.153 x 107~ 7.926 x 107° 1.049 x 1078 8.864 x 1078
el (F/m) 5.610 x 1071 1.896 x 10710
o 0.35 0.34 0.34 0.34
kp 0.19 0.14 0.5 0.16
0 129 119 103 87

information.® For the specimens with low Q the magnitude of
imaginary parts of the elastic compliance coefficients and the
piezoelectric constants are large, hence the apparent electrome-
chanical coupling constant (kp) obtained by R—A method is
substantially higher than the actual value as seen in Table 1
for K049Li0_1NbO3.

These disadvantages of the IEEE Standard method have been
overcome by the present automated iterative method (G—B fit-
ting) as mentioned in the previous paper. The formulation of the
admittance for the resonator (Eq. (1)) does not have any approxi-
mation, thus if the iterative calculation reasonably converges the
materials constants determined are accurate and reliable. In the
present iterative method, all the information of the phase angles
of the materials constants (dielectric constants, elastic compli-
ance coefficients and piezoelectric constants) are taking into
consideration. The voltage of measuring signal isless than 0.1V,
which is well below the threshold of nonlinearity even around the
resonance frequency. The dielectric constants around the piezo-
electric resonance frequency can be accurately determined in the
course of the iterative fitting process. In the present method the
data around the fundamental resonance is sufficient to perform
iterative calculation except that the 1st overtone frequency fs(z)
is required to estimate the Poisson ratio o.

It has been reported that the nonlinear iterative method has
advantages among the other method especially for the speci-
mens with low Q values.’ Though the previous iterative methods
for determination of the complex materials constants >0 are
successful in the research work, however, they requires the fre-
quencies (f1 and f>) in the peripheral iteration loop where the
admittance data contains maximum piezoelectric energy.>*1°
The process for determining these frequencies involves some
ambiguities, hence it is not feasible to automate the iteration
process. In the present iterative method, the explicit procedure
to estimate the appropriate initial values is proposed and the iter-
ation process can be fully automated. The data of fundamental
and 1st overtone frequencies and A fs(l) are required to estimate
the initial sfl and Poisson’s ratio o. The frequency fs(l) and

the frequencies fs(ll), fs(zl) of the fundamental resonance, and G

(conductance) and B (susceptance) at fs(ll ) and fs(zl ) are sufficient

for determination of the initial values for the nonlinear iteration
process.

In the present iterative method the Poisson’s ratio was cal-
culated by solving two transcendental equations (3) and (4)
numerically, thus there is no requirements for tables or poly-
nomial approximation formulas.>* All the process has been
automated in the present iterative method.

In the previous iterative method, though the data acqui-
sition has been performed around the resonance frequency
range, materials constants are determined only by the use of
the frequencies fs, fp, f1 and f> and the admittance Y(f1),
Y(f2) and Y( ]‘10).3’4’10 The whole spectra around the reso-
nance frequency have not been utilized. In the present iterative
method, determination of complex materials constants has been
achieved by a curve fitting approach. A modified from of the
Levenberg—Marquardt nonlinear regression routine (LM rou-
tine) for complex admittance equation have been employed.’
This allows for the determination of the best fit for an analytical
curve to experimental results over any frequency range of inter-
est. The duration of data acquisition for the frequency spectra
of G and B around the fundamental resonance is less than 5 min
and the iteration calculation converges only in a few seconds.

6. Conclusion

An iterative automated method for the characterization of
piezoelectric specimens of disks in the radial vibration mode has
been developed. The present nonlinear iteration method (G—B
fitting method) has the advantages that a judicious choice of
admittance data is not necessary and the complex materials con-
stants are determined by fitting the admittance spectra around the
fundamental resonance frequency to the theoretical expression
of admittance.

The complex materials constants (dielectric constants, elastic
compliance coefficients and piezoelectric constants) of piezo-
electric specimens with moderate or low Q are accurately
determined. The availability of the present G-B fitting method
for the characterization of the specimens with very low Q values
(Kg.9Lip.1NbO3) has been demonstrated. The duration for data
acquisition is less than 5 min and the iteration calculation takes
only a few seconds. The whole processing time for the G-B fit-
ting method is rather short. These results show that the present
iteration procedure (G-B fitting) will be an extremely useful tool
for characterizing a variety of piezoelectric materials.
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Appendix A
A.l. The linearized admittance Y

The linearized admittance Y is given as follows:

YI =G|+ jB;

where G| and By represent the linearized conductance and sus-

ceptance, respectively:

ra* 4ds dj, (1 +0)J1(z0)

G =w— ;
t (1—o0)st 20d0(z0) — (1 — 0)J1(z0)
ra® 24 st (14 0)J1(x0)
t (1-o0) (sﬁ’)z 20J0(z0) — (1 — 0)J1(z0)
LT A st (4 o)loo) — Ui@o)/20)]
t (1—o)sky sE z0Jo(zo) — (I — 0)J1(z0)
Ta? d%% sﬁ/

t (1- o)sﬁ sﬁ
(I + 0)J1(zo){z0J1(z0) — Jo(z0)
+ (1 = 0)(Jo(zo) — (J1(z0)/z0))}

520
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Tas ma- 4 dydy;
toT e 0T Ty sE
2 2 E"
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t 1—o ST
na® o mwa® 2
Bl=0o—ep3to———%
t t (1 —-o0)sy
{ (1 4+ 0)J1(zo0) } /2
x — 1 dy,
20J0(z0) — (1 — 0)J1(z0)
where
w=2nf
and

20 = a)a\/,osﬁ(l —0).

A.2. Matrix elements in Eq. (5)

The matrix elements in Eq. (5) are given as follows:

na2

h(f)=o—

2
ba(f) =2 {

t (1-o0)sE

(I+0) Ji(zo) B
20J0(z0) — (1 — 0)J1(20)

)

A.3. Matrix elements of Eq. (6)

The matrix elements of Eq. (6) is given as follows:

2

g1(f) = w?

wa®  4dy, {

o(f)=o—

E/
(1 —o)sy

(14 0)J1(z0) _ 1}
z0J0(z0) — (1 — 0)J1(z0) '

2 12 E”
wa® d s (1 +0)J1(z0)
o(f) =o— 371

r (1—o0)sh? z0Jo(z0) — (1 — 0)J1(z0)

(1 + o)lJo(zo) — ((J1(z0))/(20))]
20J0(z0) — (1 — 0)J1(z0)
(1 4+ 0)J1(zo){d5; J1(x0) — Jo(x0)
+ (1 — 0)(Jo(x0) — ((J1(20))/(zo))}
{z0J0(z0) — (1 = 0)J1(z0)}?
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