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bstract

n iterative method for characterization of piezoelectric ceramics of a disk in radial vibrational mode has been developed. The complex materials
onstants (dielectric constants, elastic compliance coefficients and piezoelectric constants) of piezoelectric ceramics with various mechanical quality

actor (Q) were accurately determined. An explicit procedure for estimating the appropriate initial values of the complex materials constants for a
onlinear iteration process has been presented. The present nonlinear iterative fitting procedure was carried out for the experimental admittance
pectra Y = G + jB for various specimens with moderate (667) or low (29) Q values and the validity of the method was verified.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

In the previous paper, an iterative method for characteriza-
ion of piezoelectrics with a bar in length extensional vibration

ode has been reported.1 With this method both real and imagi-
ary parts for the whole set of dielectric, elastic and piezoelectric
onstants in piezoelectric materials have been successfully deter-
ined. Though a length extensional vibrational mode of a bar

oled and exited in direction of its thickness is simple and fun-
amental, one of the more frequently used mode is a radial
ibration of an axially poled disk due to its relative ease of
anufacturing, polarization processes and wide practical appli-

ations.
There have been several reports on determination of the

omplex materials constants for ceramics in a radial vibration
ode.2–4 The methods used are classified as iterative or nonit-

rative. The noninterative method for the radial mode has been
roposed by Sherrit et al.2 In their process nine characteris-

ic frequencies (the first and the second resonance frequencies,

(1)
s and f

(2)
s , the first antiresonance frequency f

(1)
p and their

alf-band frequencies) should be measured with high accuracy,
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owever accurate measurements of those frequencies will be
ifficult task especially for the specimens with low mechanical
uality factor Q. For radial modes, the noniterative method is
alid only for materials with intermediate mechanical quality
actors. The iterative method proposed by Alemany et al.3 can
e applied to the specimens with low Q values. However their
ethod requires a judicious choice of the admittance data at

he frequencies where the maximum piezoelectric contributions
re contained. The criteria for determining those frequencies are
ot explicit, hence an iteration process is required to find those
requencies. In their method, measurements of new admittance
ata at the new frequencies are necessary in the iteration pro-
ess, thus their measurements took time. Recently a new iterative
ethod for determining the dielectric, piezoelectric and elas-

ic constants in a complex form for the piezoelectric ceramics
n radial mode has been reported by Amarande et al.4 They
mproved Alemany’s process by separating the data acquisition
nd processing. However, their method still need to determine
he characteristic frequencies, which are similar to those required
y Alemany’s method. The explicit procedure for estimating the
ppropriate initial parameters for the iteration process has not

een presented because of the indefinite characteristic frequen-
ies.

A new routine with an explicit procedure for determining
he initial values and up-to-date nonlinear least square itera-
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ion method are demanded to automate the iteration process for
haracterization of a ceramic disk in a radial vibration mode.

An iterative automated procedure for determining the
omplex materials constants from G (conductance) and B (sus-
eptance) spectra of a ceramic disk in the radial vibration mode
as been developed in this paper. The details of the procedure
ill be described in the following sections.

. Experiment

Specimens used in the experiments were K0.9Li0.1NbO3,
bZr0.51Ti0.49O3 (1 wt%: Nb2O5), PbZr0.51Ti0.49O3 and
bZr0.51Ti0.49O3 (0.5 wt%: MnO2). Ceramic specimens (radius
mm, thickness 0.8 mm) were used. The conductance (G)
nd susceptance (B) of the specimens were measured in the
requency region around the fundamental (f (1)

s ) and 1st over-
one (f (2)

s ) resonances by an impedance-gain-phase analyzer
Schlunberge SI 1260), controlled by a computer via a GP–IB
nterface. The fundamental and 1st overtone resonance bands
ere swept in the frequency range of 10 × �f

(1)
s and 10 ×

f
(2)
s , where �f

(1)
s and �f

(2)
s are the half-band widths of the

undamental and 1st overtone resonance bands, respectively. The
f

(1)
s and �f

(2)
s are defined as the difference in frequencies

etween the maximum (f1) and the minimum (f2) of B in the
undamental and 1st resonance bands, respectively. The number
f data acquisition points in the measured frequency range was
00. The programs for data acquisition and further processing
ere written in Visual Basic (Microsoft). Data on the frequency
ependence of the G and B were stored in a personal computer.
he values of G at the resonance frequency f

(1)
s (= f0) and G

nd B at frequencies f1 and f2 were picked up from the data of
(f ) and B(f ).

. Iteration Procedure

The basic idea for the present nonlinear iteration process is
ased on the method described for a bar specimen in the length
xtensional mode.1 However, in the case of a ceramic disk poled
nd excited in its thickness in the radial vibration mode, the
ircular shape impose some differences in mathematical descrip-
ion, thus the algorithm must be modified.

The electrical admittance of a electrically poled disk with a
adial vibration mode is obtained from the linear piezoelectric
asic equations.5 The admittance as a function of frequencies is
iven by the following expression:

= j ω
π a2

t

2 d2
31

(1 − σ)sE11

(1 + σ)J1(z)

z J0(z) − (1 − σ)J1(z)

+ ω
π a2

t

(
εT

33 − 2

1 − σ

d2
31

sE11

)
, (1)
here J0 and J1 are Bessel’s functions of the first kind of 0th
nd 1st orders and

= ω a

√
ρ sE11(1 − σ2),

o
s

a
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here the density ρ, the radius a, the thickness t, Poisson’s ratio
and the driving frequency ω are real quantities. The other

ymbols refer to complex parameters, such as the piezoelectric
harge coefficient d31, the dielectric constant at constant stress
T
33, and the elastic compliance at constant electric field sE11.
n important parameter obtained from the previous constants is

lectromechanical coupling factor kp given by

2
p = 2d2

31

εT
33s

E
11(1 + σ)

.

he complex materials constants sE11, εT
33, and d31 are defined

s6

E
11 = sE

′
11 − jsE

′′
11 , εT

33 = εT ′
33 − jεT ′′

33

nd

31 = d′
31 − jd′′

31.

he admittance formula given in Eq. (1) is expanded around sE
′

11,
T ′
33, and d′

31 and the terms over the square of sE
′′

11 , εT ′′
33 and d′′

31
re discarded. This simplification leads to the results:

1 = G1 + jB1

here Y1, G1 and B1 represent the linearized admittance, con-
uctance and susceptance, respectively. The expressions for the
onductance G1 and susceptance B1 are given in Appendix A.

The fundamental resonance frequency (f (1)
s ) and the 1st over-

one frequency (f (2)
s ) give two values of z as follows:

z1 = 2π f (1)
s a

√
ρ sE

′
11(1 − σ2),

z2 = 2π f (2)
s a

√
ρ sE

′
11(1 − σ2).

hese two z obey the following relation:

z2

z1
= f

(2)
s

f
(1)
s

. (2)

t both the fundamental resonance frequency f
(1)
s and the 1st

vertone frequency f
(2)
s , the resonance conditions should be

atisfied by the following equations:

1(z1) = 1 − σ, (3)

1(z2) = 1 − σ, (4)

here J1(z) = z J0(z)/J1(z) is the modified quotient of cylin-
rical functions of the first kind. The problem is just to solve
system of two transcendental equations (3) and (4) with two
nknown parameters σ and z1 under the condition of Eq. (2). We
alculate the σ and z1 which satisfies these Eqs. (3) and (4) by a
elf-consistent iteration process. This is the only place where the
st overtone frequency f

(2)
s takes part. In the rest of the process
nly experimental data around the fundamental resonance are
ufficient.

We can determine the initial values for the iteration process
s follows. The real part of elastic compliance sE

′
11 is calculated
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rom the fundamental resonance frequency f
(1)
s (= f0).

E′
11 = z1

ρa2ω2
1(1 − σ2)

,

here

1 = 2πf (1)
s a

√
ρsE

′
11(1 − σ2), ω1 = 2πf (1)

s .

he imaginary part sE
′′

11 is given as3

E′′
11 = sE

′
11

(
f2 − f1

f0

)
.

ince sE
′

11 and sE
′′

11 are known, the unknown parameters in B are
T ′
33 and d′

31. The initial values of εT ′
33 and d′

31 can be obtained by
olving the simultaneous equations of B1(f1) and B(f2) for εT ′

33
nd d′

31.

B1(f1)

B1(f2)

)
=
(

b1(f1) b2(f1)

b1(f2) b2(f2)

)(
εT ′

33

d′ 2
31

)
(5)

The expressions for b1(f ) and b2(f ) are given in Appendix
.
At this stage, sE

′
11, sE

′′
11 , εT ′

33 and d′
31 are known and εT ′′

33 and
′′
31 are the only unknown parameters in G1. The initial values
f εT ′′

33 and d′′
31 can be determined by solving the simultaneous

quations of G1(f1) and G1(f2) for εT ′′
33 and d′′

31.

G1(f1)

G1(f2)

)
=
(

g1(f1) g2(f1)

g1(f2) g2(f2)

)(
εT ′′

33

d′′
31

)
+
(

g3(f1)

g3(f2)

)
(6)

he expressions for the g1(f ), g2(f ) and g3(f ) are given in
ppendix A.
The initial values of sE11, εT

33 andd31 are put into Eq. (1) and the
teration calculation starts to simulate the G1(f ) and B1(f ). In
he present nonlinear iteration method, Levenberg–Marquardt’s
lgorithm7 is employed and the complex materials constants
re determined by minimizing χ2 as has been presented in the
revious paper.1 The determination of the complex materials
onstants has been achieved by a curve fitting approach. The
hole resonance spectra are used and the correctness of the
tting is ensured in the whole measured range. The iteration
alculation has been performed with the use of a commercially
vailable program package (IGOR Pro. WaveMetrics Inc.). This
rogram allows complex variables as fitting parameters. The
ow chart of the nonlinear iteration process is shown in Fig. 1.

. Results

The results of the simulation for G(f ) and B(f ) of the
pecimen K0.9Li0.1NbO3 is shown in Fig. 2(a) and (b). The
echanical Q factor for this specimen is 29 which is much

ower comparing with the ordinary ceramic specimens and
he signal level of the admittance is less than 1/100 compar-

ng with PbZr0.51Ti0.49O3 (0.5 wt%: MnO2). The agreement
etween the experimental G and B spectra and the calculated
nes is rather excellent taking into account of the poor reso-
ance characteristics. The complex materials constants obtained

R

d
s

Fig. 1. Blockdiagram of nonlinear iteration process.

n the present iteration method (G–B fitting) are given in
able 1 in addition to the values calculated by the conventional
esonance–antiresonance method (R–A method). The results of
he simulation for G(f ) and B(f ) for PbZr0.51Ti0.49O3 (0.5 wt%:

nO2) is shown in Fig. 3(a) and (b). The mechanical Q factor
or PbZr0.51Ti0.49O3(0.5 wt%: MnO2) is 667. The agreement
etween the experimental and the calculated values are excel-
ent. This shows that the present iterative method can be applied
or versatile specimens without regarding the magnitude of Q.
he complex materials constants for PbZr0.51Ti0.49O3 (1 wt%:
b2O5) and PbZr0.51Ti0.49O3 with rather low Q values are given

n Table 2 in addition to the values calculated by conventional

–A method.

The difference between the elastic compliance coefficients
etermined by R–A method and G- B fitting method is rather
mall (less than a few %) but the difference in the piezo-
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ig. 2. (a) G (conductance) and (b) B (susceptance) of K0.9Li0.1NbO3 in radial
ibration mode.

lectric constants and electromechanical coupling factor is
arge, especially for K0.9Li0.1NbO3. The piezoelectric constant
31 determined by R–A method is 4.7 times larger than that
etermined by G–B fitting for K0.9Li0.1NbO3. The electrome-
hanical coupling factor determined by R–A method is 3.3

imes larger than that obtained by G–B fitting method. The
ame tendency is found in PbZr0.51Ti0.49O3 (1 wt%: Nb2O5)
nd PbZr0.51Ti0.49O3. The piezoelectric constant and electrome-

q
t

able 1
omplex materials constants of K0.9Li0.1NbO3 and PbZr0.51Ti0.49O3 (0.5 wt% MnO2

K0.9Li0.1NbO3

R–A method G–B fitting

E′
11 (m2/N) 1.372 × 10−11 1.533 × 10−11

E′′
11 (m2/N) 3.536 × 10−13 5.099 × 10−12

′
31 (C/N) − 4.580 × 10−11 − 8.402 × 10−
′′
31 (C/N) − 3.136 × 10−
T ′
33 (F/m) 3.703 × 10−9 1.874 × 10−9

T ′′
33 (F/m) 2.558 × 10−10

0.34 0.33

p 0.26 0.08
35.2 29
ig. 3. (a) G (conductance) and (b) B (susceptance) of PbZr0.51Ti0.49O3 (0.5 wt%
nO2) in radial vibration mode.

hanical coupling factor determined by R–A method for low Q
aterials are substantially higher than the values determined by

he G–B fitting method.

. Discussion
The IEEE Standard method has the advantages of being
uick and not requiring any expensive equipment. These advan-
ages, however, are accompanied by ignorance of all the phase

) estimated by resonance–antiresonance (R–A) method and G–B fitting

PbZr0.51Ti0.49O3 (0.5 wt% MnO2)

R–A method G–B fitting

1.036 × 10−11 1.034 × 10−11

1.474 × 10−14 0.905 × 10−14

12 − 8.463 × 10−11 − 7.765 × 10−11

12 − 1.658 × 10−13

8.223 × 10−9 7.647 × 10−9

7.085 × 10−10

0.33 0.33
0.56 0.48

702 667
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Table 2
Complex materials constants of PbZ0.51Ti0.49O3 and PbZr0.51Ti0.49O3 (1 wt%Nb2O5) estimated by resonance–antiresonance (R–A) method and G–B fitting

PbZ0.51Ti0.49O3 PbZr0.51Ti0.49O3 (1 wt%Nb2O5)

R–A method G–B fitting R–A method G–B fitting

sE
′

11 (m2/N) 1.230 × 10−11 1.192 × 10−11 1.216 × 10−11 1.112 × 10−11

sE
′′

11 (m2/N) 9.517 × 10−14 3.507 × 10−13 1.185 × 10−13 5.418 × 10−13

d′
31 (C/N) − 2.461 × 10−11 − 3.248 × 10−11 − 3.129 × 10−12 − 9.0666 × 10−11

d′′
31 (C/N) − 2.354 × 10−12 − 2.067 × 10−12

εT ′
33 (F/m) 8.153 × 10−9 7.926 × 10−9 1.049 × 10−8 8.864 × 10−8

εT ′′
33 (F/m) 5.610 × 10−11 1.896 × 10−10

σ 0.35 0.34 0.34 0.34
k
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p 0.19 0.14
129 119

nformation.8 For the specimens with low Q the magnitude of
maginary parts of the elastic compliance coefficients and the
iezoelectric constants are large, hence the apparent electrome-
hanical coupling constant (kp) obtained by R–A method is
ubstantially higher than the actual value as seen in Table 1
or K0.9Li0.1NbO3.

These disadvantages of the IEEE Standard method have been
vercome by the present automated iterative method (G–B fit-
ing) as mentioned in the previous paper. The formulation of the
dmittance for the resonator (Eq. (1)) does not have any approxi-
ation, thus if the iterative calculation reasonably converges the
aterials constants determined are accurate and reliable. In the

resent iterative method, all the information of the phase angles
f the materials constants (dielectric constants, elastic compli-
nce coefficients and piezoelectric constants) are taking into
onsideration. The voltage of measuring signal is less than 0.1 V,
hich is well below the threshold of nonlinearity even around the

esonance frequency. The dielectric constants around the piezo-
lectric resonance frequency can be accurately determined in the
ourse of the iterative fitting process. In the present method the
ata around the fundamental resonance is sufficient to perform
terative calculation except that the 1st overtone frequency f

(2)
s

s required to estimate the Poisson ratio σ.
It has been reported that the nonlinear iterative method has

dvantages among the other method especially for the speci-
ens with low Q values.9 Though the previous iterative methods

or determination of the complex materials constants 2–4,10 are
uccessful in the research work, however, they requires the fre-
uencies (f1 and f2) in the peripheral iteration loop where the
dmittance data contains maximum piezoelectric energy.3,4,10

he process for determining these frequencies involves some
mbiguities, hence it is not feasible to automate the iteration
rocess. In the present iterative method, the explicit procedure
o estimate the appropriate initial values is proposed and the iter-
tion process can be fully automated. The data of fundamental
nd 1st overtone frequencies and �f

(1)
s are required to estimate

he initial sE11 and Poisson’s ratio σ. The frequency f
(1)
s and
he frequencies f
(1)
s1 , f

(1)
s2 of the fundamental resonance, and G

conductance) and B (susceptance) at f (1)
s1 and f

(1)
s2 are sufficient

or determination of the initial values for the nonlinear iteration
rocess.

o
t
i
f

0.5 0.16
103 87

In the present iterative method the Poisson’s ratio was cal-
ulated by solving two transcendental equations (3) and (4)
umerically, thus there is no requirements for tables or poly-
omial approximation formulas.2,4 All the process has been
utomated in the present iterative method.

In the previous iterative method, though the data acqui-
ition has been performed around the resonance frequency
ange, materials constants are determined only by the use of
he frequencies fs, fp, f1 and f2 and the admittance Y (f1),
(f2) and Y (fp).3,4,10 The whole spectra around the reso-
ance frequency have not been utilized. In the present iterative
ethod, determination of complex materials constants has been

chieved by a curve fitting approach. A modified from of the
evenberg–Marquardt nonlinear regression routine (LM rou-

ine) for complex admittance equation have been employed.7

his allows for the determination of the best fit for an analytical
urve to experimental results over any frequency range of inter-
st. The duration of data acquisition for the frequency spectra
f G and B around the fundamental resonance is less than 5 min
nd the iteration calculation converges only in a few seconds.

. Conclusion

An iterative automated method for the characterization of
iezoelectric specimens of disks in the radial vibration mode has
een developed. The present nonlinear iteration method (G–B
tting method) has the advantages that a judicious choice of
dmittance data is not necessary and the complex materials con-
tants are determined by fitting the admittance spectra around the
undamental resonance frequency to the theoretical expression
f admittance.

The complex materials constants (dielectric constants, elastic
ompliance coefficients and piezoelectric constants) of piezo-
lectric specimens with moderate or low Q are accurately
etermined. The availability of the present G–B fitting method
or the characterization of the specimens with very low Q values
K0.9Li0.1NbO3) has been demonstrated. The duration for data
cquisition is less than 5 min and the iteration calculation takes

nly a few seconds. The whole processing time for the G–B fit-
ing method is rather short. These results show that the present
teration procedure (G–B fitting) will be an extremely useful tool
or characterizing a variety of piezoelectric materials.
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ppendix A

.1. The linearized admittance Y1

The linearized admittance Y1 is given as follows:

1 = G1 + jB1

here G1 and B1 represent the linearized conductance and sus-
eptance, respectively:

1 = ω
π a2

t

4 d′
31 d′′

31

(1 − σ) sE
′

11

(1 + σ)J1(z0)

z0J0(z0) − (1 − σ)J1(z0)

− ω
π a2

t

2 d′ 2
31

(1 − σ)

sE
′′

11

(sE
′

11)
2

(1 + σ)J1(x0)

z0J0(z0) − (1 − σ)J1(z0)

+ ω
π a2

t

d′ 2
31

(1 − σ)sE
′

11

sE
′′

11

sE
′

11

(1 + σ)[J0(z0) − (J1(z0)/z0)]

z0J0(z0) − (1 − σ)J1(z0)
z0

− ω
π a2

t

d′ 2
31

(1 − σ)sE
′

11

sE
′′

11

sE
′

11

×

(1 + σ)J1(z0){z0J1(z0) − J0(z0)

+ (1 − σ)(J0(z0) − (J1(z0)/z0))}
{z0J0(z0) − (1 − σ)J1(z0)}2 z0

+ ω
π a2

t
εT ′′

33 − ω
π a2

t

4

1 − σ

d′
31d

′′
31

sE
′

11

+ ω
π a2

t

2

1 − σ

d′ 2
31s

E′′
11

sE′2
11

1 = ω
π a2

t
εT ′

33 + ω
π a2

t

2

(1 − σ)sE
′

11

×
{

(1 + σ)J1(z0)

z0J0(z0) − (1 − σ)J1(z0)
− 1

}
d′ 2

31,

here

= 2πf

nd

0 = ω a

√
ρ sE

′
11(1 − σ).

.2. Matrix elements in Eq. (5)

The matrix elements in Eq. (5) are given as follows:

b1(f ) = ω
π a2

,

t

b2(f ) = ω
π a2

t

2

(1 − σ) sE
′

11

{
(1 + σ) J1(z0)

z0J0(z0) − (1 − σ)J1(z0)
− 1

} [1
Ceramic Society 28 (2008) 133–138

.3. Matrix elements of Eq. (6)

The matrix elements of Eq. (6) is given as follows:

g1(f ) = ω
π a2

t
,

g2(f ) = ω
π a2

t

4 d′
31

(1 − σ)sE
′

11

{
(1 + σ)J1(z0)

z0J0(z0) − (1 − σ)J1(z0)
− 1

}
,

g3(f ) = ω
π a2

t

d′ 2
31

(1 − σ)

sE
′′

11

sE′ 2
11

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 2
(1 + σ)J1(z0)

z0J0(z0) − (1 − σ)J1(z0)

+ (1 + σ)[J0(z0) − ((J1(z0))/(z0))]

z0J0(z0) − (1 − σ)J1(z0)
z0

×

(1 + σ)J1(z0){d′′
31J1(x0) − J0(x0)

+ (1 − σ)(J0(x0) − ((J1(z0))/(z0)))}
{z0J0(z0) − (1 − σ)J1(z0)}2 z0 + 2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
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